Structure and dynamics of the fusion pore in live cells.

نویسندگان

  • Sang-Joon Cho
  • Anthony S Quinn
  • Marvin H Stromer
  • Sudhansu Dash
  • Jinah Cho
  • Douglas J Taatjes
  • Bhanu P Jena
چکیده

Atomic force microscopy reveal pit-like structures typically containing three or four, approximately 150 nm in diameter depressions at the apical plasma membrane in live pancreatic acinar cells. Stimulation of secretion causes these depressions to dilate and return to their resting size following completion of the process. Exposure of acinar cells to cytochalasin B results in decreased depression size and a loss in stimulable secretion. It is hypothesized that depressions are the fusion pores, where membrane-bound secretory vesicles dock and fuse to release vesicular contents. Zymogen granules, the membrane-bound secretory vesicles in exocrine pancreas, contain the starch digesting enzyme, amylase. Using amylase-specific immunogold labeling, localization of amylase at depressions following stimulation of secretion is demonstrated. This study confirms depressions to be the fusion pores in pancreatic acinar cells. High-resolution images of the fusion pore in live pancreatic acinar cells reveal the structure in much greater detail than has previously been observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and composition of the fusion pore.

Earlier studies using atomic force microscopy (AFM) demonstrated the presence of fusion pores at the cell plasma membrane in a number of live secretory cells, revealing their morphology and dynamics at nm resolution and in real time. Fusion pores were stable structures at the cell plasma membrane where secretory vesicles dock and fuse to release vesicular contents. In the present study, transmi...

متن کامل

REVIEW Fusion pore or porosome: structure and dynamics

Electrophysiological measurements on live secretory cells almost a decade ago suggested the presence of fusion pores at the cell plasma membrane. Membrane-bound secretory vesicles were hypothesized to dock and fuse at these sites, to release their contents. Our studies using atomic force microscopy on live exocrine and neuroendocrine cells demonstrate the presence of such plasma membrane pores,...

متن کامل

Recombinant Production of a Novel Fusion Protein: Listeriolysin O Fragment Fused to S1 Subunit Of Pertussis Toxin

Background: Some resources have suggested that genetically inactivated pertussis toxoid (PTs) bear a more protective effect than chemically inactivated products. This study aimed to produce new version of PT, by cloning an inactive pertussis toxin S1 subunit (PTS1) in a fusion form with N-terminal half of the listeriolysin O (LLO) pore-forming toxin. Methods: Deposited pdb structure file of the...

متن کامل

Fusion pore in live cells.

Earlier electrophysiological measurements on live secretory cells suggested the presence of fusion pores at the plasma membrane, where secretory vesicles fuse to release vesicular contents. Recent studies using atomic force microscopy demonstrate for the first time the presence of the fusion pore and reveal its morphology and dynamics at near-nanometer resolution and in real time.

متن کامل

Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis

Cell fusions produce multinucleate syncytia that are crucial to the structure of essential tissues in many organisms [1-5]. In humans the entire musculature, much of the placenta, and key cells in bones and blood are derived from cell fusion. Yet the developmental fusion of cell membranes has never been directly observed and is poorly understood. Similarity between viral fusion proteins and rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell biology international

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2002